
www.manaraa.com

 12.1

Proceedings of MASPLAS’04
Mid-Atlantic Student Workshop on Programming Languages and Systems

Seton Hall University, April 3, 2004

Integration of GPS Devices with Computer Software

for Airline Safety Applying C/C++ and Perl

Jon Ellch, Michael Carter, Sean Henderson, Michael Heenan, Ruijian Zhang

Purdue University Calumet

Abstract
The horrible events of September 11, 2001

unveiled a devastating realm of vulnerability and
inefficiency in air travel tracking and safety. In this
research, we pursue the integration of Global
Positioning System (GPS) devices with computer
software applying C/C++ and Perl. This paper offers
a comprehensive solution that will minimize risk and
maximize fault tolerance in the most vulnerable
targets. Our project offers a universal technique for
tracking planes on the ground and in the air. It
provides a supplement to the existing radar system. It
prevents mid air collisions and the use of planes as
weapons. It prevents runway incursions/ground
collisions. The system also ensures fault tolerance for
the air traffic control tower. Additionally, the project
deploys system wide “No Fly Zone”, and “Soft
Wall” alert and support.

The project can be categorized into two
types of program: non-user interaction and user
interaction. The former is responsible for transmitting
data to the database. These were written in PERL
because of its simple database interface and superior
string manipulation ability. The use of PERL also
made these programs cross platform. The latter
needs both speed and GUI's. The need for speed
encourages us to use C/C++ instead of Java or
PERL. We use C to modify the gps-drive. The three

dimensional graphical view reaps the benefits of
object oriented design using C++ and OpenGL.

1. Introduction
The horrible events of September 11, 2001

unveiled a devastating realm of vulnerability and
inefficiency in air travel tracking and safety. Since
September 11th, the issue of safety remains haunting
and intense—even the bravest patron and pilot
question the ultimate fate of surviving a flight. This
paper offers a comprehensive solution, which
addresses the reality that the government and airline
industry face a relentless challenge to demonstrate
perpetual efforts and results ensuring air travel safety.
In this research, we pursue the integration of Global
Positioning System (GPS) devices with computer
software applying C/C++ and PERLl. The system
creates an efficient and diversified method for air
travel tracking and safety. We have identified that
risk factors are prevalent not only in the air, but also
on the runway and within the control tower. The
objective of our project is to offer a solution that will
minimize risk and maximize fault tolerance in the most
vulnerable targets. The chief factors to such a scheme
involve:

1) Identifying air travel activity on no-fly
zones;

www.manaraa.com

 12.2

2) Utilizing the system to prevent runway
incursions/ground collisions; and

3) Ensuring fault tolerance for the air traffic
control tower.

This paper is organized in five sections.
Section Two describes the motivation and objectives
of our project. Section Three elaborates on the
system design and our strategic approach. Section
Four elucidates the implementation of the system and
the technology usage. Finally, Section Five provides
concluding remarks and future directions.

2. Motivation and Objectives

Our goal is to ensure that the project is
beneficial, innovative, and cost efficient. A major
objective of our project is that it should offer a
universal technique for tracking planes on the ground
and in the air. The National Transportation Safety
Board (NTSB) has made recommendations for its
“Most Wanted Transportation Safety Improvements
Aviation Issue Areas.” One key area of concern is
runway incursions/ground collisions of aircraft.
Current systems either do not have support for
runway collision avoidance, or they track aircraft on
the ground and in the air separately. Another
objective is that the project should provide a
supplement to the existing radar system. In essence,
it addresses the risk of planes going “off radar.” The
need is imperative because it prevents mid air
collisions and the use of planes as weapons.
Additionally, the system deploys system wide “no fly
zone”, and “soft wall” alert and support. Presently,
this matter is being addressed as a stand-alone
system for each entity.
Also, the system should provide the following
benefits:
• a three-dimensional graphical view to enhance
visibility;
• a continuous monitoring tool through a simulated
glide path tunnel to assist pilot navigation;

• a more efficient and dependable manner of
retrieving the plane’s data through the use of a
database; and
• a comparative analysis tool for all air travel activity.

GPS devices have been utilized in airplanes
long before the issue of air travel safety intensified.
Many commercial projects are designed to track
aircraft or prevent collisions—TCAS (Traffic Alert
and Collision Avoidance System) is one of them. But
our project offers a unique approach to provide
avionic tracking and safety. What makes our project
unique is its integration and modularity. It offers a
solution that incorporates tracking distinctions and
efforts into one entity and creates an alternative to
stand-alone approaches. Presently, the airline
industry and government address flight tracking, in-
air collision avoidance, and runway collision
avoidance independently from each other. There is
no evidence that a coherent system integrating the
problems and solutions of the aforementioned exists
at this point.

Another concept of uniqueness evolves
around the usage of fault tolerance. Recent advances
in database technology allow for redundant systems
to automatically take over if the primary database
should fail. Furthermore, if any component of our
system fails, it has only a negligible effect on the
system as a whole. For example, if the 3D-client
failed to operate, other infrastructures would not be
affected, and the default to 2D-client would allow a
continuance of full operation without interruption.
This is imperative for disaster prevention at the
control tower interface.

In addition, our system makes efficient use of
existing infrastructure. Current systems use expensive
proprietary networking hardware. We are proposing
the use of the current nationwide 3G cellular
networks. Modern cellular networks are capable of
moving data at a rate of 100 kbps, which is well
within the limits of what our program needs. This
alleviates the need to create expensive infrastructure,

www.manaraa.com

 12.3

similar to the current network of radar stations, solely
for the use of tracking planes.

3. System Design

The system design is shown in Figure 1. The
following is a synopsis of each component’s function:

• The heartbeat of the project is a database.
None of the other programs can function without it.
Every other application either puts data in or extracts
data from the database.

• The 2D-client is the application the user will
most likely to interact with. The 2D-client is a user-
friendly program capable of displaying data extracted
from the database and the positions of the planes on
top of a two dimensional map. The 2D-client will
also be responsible for alerting the users about
critical flight events, such as a plane off course or
flying below the radar, etc. The 2D-client stems from
the popular open source program GpsDrive.

• The 3dclient will display the same data
from the database as the 2D-client, however, it does
not provide an easy method to prompt the user for
input. Consider the 3D-client, an accessory program
running on an additional monitor next to the 2D-
client, providing a more in depth view of a plane’s
location using OpenGL.

• The modified GpsDrive and the 3D-client
will receive events from the Logic Server and
respond accordingly by alerting the user about a
problematic situation.

• The Logic Server is a program that
analyzes the database continuously and redlines
problems. Once the Logic Server detects an event, it
notifies all interactive clients.

• The Real Client represents a small program
that translates the NMEA (National Marine
Electronic Association) output of the GPS-hardware
into the internal database format, which continuously
updates to the database.

• The Virtual Client will be a slightly larger program
that updates the database continuously with a virtual
position—emulating the flight plan of a plane. Many
instances of the virtual client can be driven by scripts
to allow the emulation of complex situations involving
more than one plane.

Let us see the flow of the GPS data first. The
GPS data originates at the eTrex handheld GPS unit
and travels over the serial cable into our laptop,
which represents the computer in a real plane. At this
point the “Real Client” is dubbed. At a specified
interval, the real client will transmit the data over a
wireless network and insert it into the database.
Once in the database, the 2D-client, 3D-client, and
Logic Server programs will use the data. We wrote a
“Virtual Client” program that can simulate one or
more of the planes in the database for debugging
purposes.

We have the 2D- and 3D-clients constantly
extracting data from the database. These are the
interfaces designed for user interaction. The
programs are responsible for displaying information
about the planes’ positions and reporting their status
in an intuitive manner. They also alert appropriate
parties when “events” happen, for example, the 2D-
and 3D-clients both should notify the user.

The logic server is designed to notify any
client (2D-client / 3D-client) whenever an event
happens. Using an independent program that
communicates over the network has many
advantages. One of most important advantages is
that it reduces duplicate code and work. The 2D-
client and the 3D-client do not analyze the database
constantly. Instead, the clients use the logic server to
analyze and alert. Another key advantage is that the
independent program allows a conversion of a
definition to ensure that it can be understood system
wide and individual clients have the same settings.

www.manaraa.com

 12.5

Figure 1. System Design

The design makes development faster since
the project can be partitioned into many self-
contained modules that can be developed
concurrently. It also allows for expandability. If we
need to add more events or another client to display
or analyze the data in a different way, the
infrastructure is already present.

4. Implementation and Language Features

We applied C/C++ and Perl as
programming languages to implement the system
design. We developed an integration of Global
Positioning System (GPS) devices with computer
software

The project can be categorized into two
types of program: non-user interaction and user

interaction. The former is responsible for
transmitting data to the database. These were
written in PERL because of its simple database
interface and superior string manipulation ability.
The use of PERL also made these programs cross
platform. The latter needs both speed and GUI's.
The need for speed encourages us to use C/C++
instead of Java or
PERL. We use C to modify the GPS-drive. The
three dimensional graphical view reaps the benefits
of object oriented design using C++ and OpenGL.

All the information about a given plane’s
position is stored in a database so that our system
can display the plane’s location and make sure that
it is safe. If the plane is not safe, the system warns
the user of the problem. The user will have both a

www.manaraa.com

 12.5

2D-client and a 3D-client to work with. The 2D-
client is built on an open source program GPS-
drive. It shows the user any warning messages that
might occur along with a view of planes’ positions
on top of a two dimensional map. The 3D-client is
an accessory to the 2D-client. It gives the user a
more in depth view of a plane’s location using
OpenGL. The logic server analyzes data in the
database to check for possible hazards such as two
planes being too close and broadcasts any warning
messages to all clients connected. The user only
sees the results of the logic server via the 2D-client
or the 3D-client; they never interact with the logic
server. The system uses wireless networking to
allow the clients to communicate with the logic
server and the database. Data originates from
eTrex handheld GPS units and is entered into the
database through a serial cable connected to a
laptop. This allows for multiple GPS units to be
working simultaneously from various locations. Our
system is an inexpensive and portable approach to
making the world a safer place.

5. Conclusion

In this paper, we designed and implemented
a computer-based solution to a real world problem.
Our system uses software along with GPS devices
to make airline travel safer. The main goal is to
prevent unnecessary collisions of aircraft with other
aircraft, or with buildings.

All the information about a given plane’s
position is stored in a database so that our system
can display the plane’s location and make sure that
it is safe. If the plane is not safe, the system warns
the user of the problem. The system uses wireless
networking to allow the clients to communicate with
the logic server and the database. Data originates
from eTrex handheld GPS units and is entered into
the database through a serial cable connected to a
laptop. This allows for multiple GPS units to be
working simultaneously from various locations. Our

system is an inexpensive and portable approach to
making the world a safer place.

Reference:

[1] National Transportation Safety Board (NTSB)
www.ntsb.gov/aviation/aviation.htm

[2] Dale Depriest, “A GPS User Manual: Working
With Garmin Receivers”, The National Marine
Electronics Association: 2003, page 225.

[3] GpsDrive: gpsdrive.kraftvoll.at/index.shtml

[4] Jeff Molofee, “A Windows Base Application
for Unix Model”, 2003.

[5] www.mysql.com

